Regulation of secondary metabolism by chromatin structure and epigenetic codes
نویسندگان
چکیده
منابع مشابه
Epigenetic regulation of chromatin structure and gene function by biotin.
Covalent modifications of histones are a crucial component of epigenetic events that regulate chromatin structures and gene function. Evidence exists that distinct lysine residues in histones are modified by covalent attachment of the vitamin biotin, catalyzed by biotinidase and holocarboxylase synthetase. Biotinylation of histones appears to be conserved across species. The following biotinyla...
متن کاملRegulation of zygotic gene activation by chromatin structure and epigenetic factors
After fertilization, the genomes derived from an oocyte and spermatozoon are in a transcriptionally silent state before becoming activated at a species-specific time. In mice, the initiation of transcription occurs at the mid-one-cell stage, which represents the start of the gene expression program. A recent RNA sequencing analysis revealed that the gene expression pattern of one-cell embryos i...
متن کاملRegulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملEpigenetic regulation of drug metabolism and transport
The drug metabolism is a biochemical process on modification of pharmaceutical substances through specialized enzymatic systems. Changes in the expression of drug-metabolizing enzyme genes can affect drug metabolism. Recently, epigenetic regulation of drug-metabolizing enzyme genes has emerged as an important mechanism. Epigenetic regulation refers to heritable factors of genomic modifications ...
متن کاملEpigenetic Mechanisms of Gene Regulation: Relationships between DNA Methylation, Histone Modification, and Chromatin Structure
DNA methylation is a post-replicative, or epigenetic, modification of the genome that is critical for proper mammalian embryonic development, gene silencing, X chromosome inactivation, and imprinting. Genome-wide DNA methylation patterns are nonrandomly distributed and undergo significant remodeling events during embryogenesis. DNA methylation patterns are also frequendy 'remodeled' in tumor ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fungal Genetics and Biology
سال: 2011
ISSN: 1087-1845
DOI: 10.1016/j.fgb.2010.07.009